Internship Proposal: Dynamic features clustering for object detection and tracking in interactive perception

Overview

Supervisors: Alexandre CONINX, Stéphane DONCIEUX, Elias HANNA (ISIR AMAC Team)
Duration: 6 months
Location: ISIR (Institut des Systèmes Intelligents et de Robotique), 4 Place Jussieu 75005, Paris

Topic Description

Scientific Context:

In order to be able to interact with its environment and solve non-trivial object-based tasks (e.g. manipulation), a robot must be able to locate objects in its perceptual field, and to track them throughout the interaction. In the case of a static task and structured environment, for example objects on a tabletop, those perceptual abilities can be hardcoded. But in an open-ended context where the environment, the task and the objects can’t be known in advance and can change during the interaction, it is desirable for the robot to be able to bootstrap its perceptual abilities with limited assumptions, and to be able to update its interpretation of the visual scene during the interaction to keep track with the changes in the setup (e.g. new objects, changes in the background,...).

Interactive perception [BHS+17] offers a powerful paradigm to address this issue. Previous works [vHKP14, LLD16, GMCD19] have shown that an interactive perception setup can be used to train an online classifier able to recognize movable object to their visual and geometric features, but those systems do not handle the subsequent tracking of those objects throughout the interactions. Besides, training an online classifier able to adapt to a shifting input data distribution (the “concept drift” problem [MS03]) while correctly handling outliers remains a challenging problem. On the other hand, computer vision-based tracking and segmentation algorithms that can pro-vide a persistent segmentation of the visual world and track a moving object have been proposed [PKAW13, KKAS13, PZV18] but they usually assume a known initial segmentation or at least a known, static environment.

Recent progress has been done on both those issues, with new dynamic clustering techniques able to track evolving environments [BTmGp19] and an improved segmentation algorithm for interactive perception able to efficiently detect and track moving objects with little assumptions on the environment [Han19], but a comprehensive interactive perception system integrating those advances has yet to be designed.
Internship Goals and Roadmaps:

We propose to build an integrated system for low level interactive perception, that could be reused as a building block in further robotics experiments. That system will follow the same general approach as the setup proposed in [GMCD19], using interaction with the environment to collect data about movable and non-movable parts of the environment to train a classifier able to segment objects from the background, with two major modifications. First, it will also use the persistent interactive segmentation system proposed in [Han19] to build and maintain a persistent model of the world and track recognized objects throughout the interaction. Second, instead of the CMM classifier proposed in [GMCD19], it will use a dynamic clustering such as the DyClee algorithm [BTmGp19] to improve performance and address continual learning and concept drift. The system will be evaluated first in simulated environments and then on the team’s robotic platforms such as the Baxter and PR2 robots.

The proposed roadmap for the internship is described below:

1. The first step is to build an interactive perception system for movable object recognition based on the same principles and objectives as [GMCD19], but replacing the CMM classifier with the DyClee algorithm [BTmGp19], using the authors’ open-source implementation. The system would be evaluated with the same metrics as in [GMCD19] and the results compared.

2. The second step is to add the interactive segmentation system from [?], in order to allow the system to track the detected moving objects and maintain a persistent world model throughout the interaction.

The complete system would then be evaluated on simulated and real robotics platforms, and compared to the state of the art in interactive perception, segmentation and tracking, in the perspective of submitting a conference or journal article.

Candidate Profile

The candidate should have a strong interest in robotics and be enrolled in an MSc or engineering school program in robotics, computer vision or a related field. Good development skills and proficiency in C++ and Python programming languages are required, and some experience with simulated or real robots (and with the ROS middleware) would be greatly appreciated. The project will require working in close cooperation with several PhD students and researchers and requires good teamwork abilities. A working knowledge of English is required; knowledge of French is appreciated but not necessary.

How to apply

Send an e-mail to alexandre.coninx@sorbonne-universite.fr with [Interactive perception internship] in the topic with a CV and motivation letter.
References


