PhD proposal:
Generalisation in reinforcement learning through automatic adaptation of evaluation conditions

Overview

- **Supervisors:** Stéphane DONCIEUX, Nicolas BREDECHE, Alexandre CONINX (ISIR AMAC Team)

Topic description

Scientific context

Reinforcement learning methods allow to build a policy that maximizes a given reward in a particular environment. The generated policy heavily depends on the domain it has been tested on. It creates two different issues: (1) the domain may be too hard for the learning process to proceed efficiently (bootstrap problem) and (2) the policy may not generate the same expected behaviour in different domains (generalization issue). These two challenges are particularly important when applying reinforcement learning to robotics or open video games as the obtained policies are expected to face different situations and behave accordingly without the need to restart learning from scratch each time a modification of the environment occurs (modification of lighting conditions, of object positions or shape, etc).

Both problems can be dealt with at the same time by approaches that vary the evaluation conditions. The generalisation problem can be reduced by evaluating on multiple randomized environment conditions [TFR+17, TPA+18]. It reduces the sample efficiency of the process, as a policy has to be evaluated multiple times, but this limitation can be mitigated with approaches relying on surrogate models [PKMD11]. Likewise, the bootstrap problem can be dealt with approaches that adapt the domain during the learning process, an approach called curriculum learning in the machine learning field [BLCW09]. It has led to policies generating policies solving very challenging conditions of benchmark tasks as the BipedalWalker [WLCS19].

PhD goals

Evolutionary approaches allow to perform both policy parameter and evaluation parameter co-evolution to generate an ‘arm race’ effect in which evaluation conditions become progressively more challenging, thus forcing policies to bootstrap and generalise better [DJ04, WLCS19]. The goal of this PhD is to study such approaches in the context of policy generations and in the context of quality-diversity algorithms (QD-algorithms) [PSS16, CD17] that aim at generating diverse sets of policies instead of a single optimal policy.

Candidate profile

The candidate should have a strong interest in machine learning and be enrolled in a MSc or engineering school program in computer science, machine learning or related
fields. Good development skills and proficiency in Python programming language are mandatory. Good development skills in C++ is appreciated. The project will require working in close cooperation with several PhD students and researchers and requires good teamwork abilities. A working knowledge of English is required; knowledge of French is appreciated but not necessary.

How to apply

Send an e-mail to stephane.doncieux@sorbonne-universite.fr with ‘[PhD application] Generalisation in reinforcement learning through automatic adaptation of evaluation conditions’ as topic and with a CV and motivation letter.

References

