Robust Continuous Prediction of Human Emotions using Multiscale Dynamic Cues

Jérémie Nicolle
Univ. Pierre & Marie Curie
ISIR - CNRS UMR 7222
F-75005, Paris - France
nicolle@isir.upmc.fr

Vincent Rapp
Univ. Pierre & Marie Curie
ISIR - CNRS UMR 7222
F-75005, Paris - France
rapp@isir.upmc.fr

Kévin Bailly
Univ. Pierre & Marie Curie
ISIR - CNRS UMR 7222
F-75005, Paris - France
bailly@isir.upmc.fr

Lionel Prevost
Univ. of French West Indies & Guiana - LAMIA - EA 4540
Guadeloupe - France
lionel.prevost@univ-ag.fr

Mohamed Chetouani
Univ. Pierre & Marie Curie
ISIR - CNRS UMR 7222
F-75005, Paris - France
chetouani@isir.upmc.fr

ABSTRACT
Designing systems able to interact with humans in a natural manner is a complex and far from solved problem. A key aspect of natural interaction is the ability to understand and appropriately respond to human emotions. This paper details our response to the Audio/Visual Emotion Challenge (AVEC’12) whose goal is to continuously predict four affective signals describing human emotions (namely valence, arousal, expectancy and power). The proposed method uses log-magnitude Fourier spectra to extract multiscale dynamic descriptions of signals characterizing global and local face appearance as well as head movements and voice. We perform a kernel regression with very few representative samples selected via a supervised weighted-distance-based clustering, that leads to a high generalization power. For selecting features, we introduce a new correlation-based measure that takes into account a possible delay between the labels and the data and significantly increases robustness. We also propose a particularly fast regressor-level fusion framework to merge systems based on different modalities. Experiments have proven the efficiency of each key point of the proposed method and we obtain very promising results.

1. INTRODUCTION
In Human-Computer Intelligent Interaction systems, a current challenge is to give the computer the ability to interact naturally with the user with some kind of emotional intelligence. Interactive systems should be able to perceive pain, stress or inattention and to adapt and respond to these affective states, or, in other words, to interact with humans vocally and visually in a natural way. An essential step towards this goal is the acquisition, interpretation and integration of human affective state within the Human-Machine communication system. To recognize affective states, human-centered interfaces should interpret various social cues from both audio and video modalities, mainly linguistic messages, prosody, body language, eye contact and facial expressions.

Automatic recognition of human emotions from both modalities has been an active field of research over the last decade. Most of the proposed systems have focused on the recognition of acted or prototypal emotions recorded in a constrained environment and leading to high recognition rates. These systems usually describe affects via a prototypal modeling approach using the six basic emotions introduced in the early 70s by Ekman [3]. Another standard way to describe facial expressions is to analyze the set of muscles movements produced by a subject. These movements are called facial Action Units (AUs) and the corresponding code is the Facial Action Coding System (FACS) [4]. The first challenge on Facial Expression Recognition and Analysis (FERA’11) focused on these two kinds of affect description. Meta-analysis of challenge results are summarized in [21]. These methods generally use discrete systems whether based on static descriptors (geometrical or appearance features) and/or on static classifiers such as Support Vector Machines [20]. However, these descriptions do not reflect real-life interac-
tions and the resulted systems can be irrelevant to an everyday interaction where people may display subtle and complex affective states. To take this complexity into account, this classical description via prototypal modeling approach has recently evolved to a dimensional approach where emotions are described continuously within an affect space. The choice of the dimensions of this space remains an open question but Fontaine & al. [5] showed that four dimensions cover the majority of affective variability: Valence (positivity or negativity), Arousal (activity), Expectancy (anticipation) and Power (control). The Affective Computing research community has recently focused on the area of dimensional emotion prediction and the first workshop on this topic (EmoSPACE’11, [7]) was organized last year, followed by the first Audio/Visual Emotion Challenge (AVEC’11 [19]).

Usually, the most important parts of multimodal emotion recognition systems are the learning database, the extracted features, the predictor and the fusion method. More precisely, one of the main key points concerns the features’ semantic level. Some methods use low-level features. For example, Wollmer et al. [23] propose an approach using features based on the optical flow. Dahmane et al. [2] use Gabor filter energies to compute their visual features. Ramirez et al. [15], conversely, prefer to extract high-level features such as gaze direction, head tilt or smile intensity. Similarly, Gunes et al. [6] focus on spontaneous head movements.

Another key aspect of this new dimensional approach is the need for the system to take the dynamic of human emotions into account. Some methods propose to directly encode dynamic information in the features. For example, Jiang et al. [8] extend the purely spatial representation LPQ to a dynamic texture descriptor called Local Phase Quantisation from Three Orthogonal Planes (LPQ-TOP). Cruz et al. [1] propose an approach that aligns the faces with Avatar Image Registration, and subsequently compute LPQ features. Meddah et al. [9] predict valence using facial Action Unit spectrograms as features. In this study, we focus on mid-level dynamic features, extracted using different visual cues: head movements, face deformations and also global and local face appearance variations. Most methods use visual cues directly as features. In our method, dynamic information is included by computing the log-magnitude Fourier spectra of the temporal signals that describe the evolution of the previously introduced visual cues. Since an accurate and robust system should take advantage of interpreting signals from various modalities, we also include audio features to bring complementary information.

For the prediction step, different machine learning algorithms can be used. Several methods are based on context-dependent features. For example, Meng et al. [11] propose a system based on Hidden Markov Models. Wollmer et al. [23] investigate a more advanced technique based on context modeling using Long Short-Term Memory neural networks. These systems provide the advantage to encode dynamics within the learning algorithm. Another solution is to base the system on a static predictor as, for instance, the well-known Support Vector Machine [1, 17]. Dynamic information being already included in our features, we chose a static predictor. The proposed method uses a kernel regressor based on the Nadaraya-Watson estimator [12]. For selecting representative samples, we perform a clustering step in a space of preselected relevant features.

To merge all visual and vocal information, various fusion strategies may be relevant. Feature-level fusion (also called early fusion) can be performed by merging extracted features from each modality into one cumulative structure and feeding it to a single classifier. This technique is appropriate for synchronized modalities but some issues may appear for unsynchronized or heterogeneous features. Another solution is decision-level fusion (or late fusion); each extracted feature set feeds one classifier and all the classifier outputs are merged to provide the final response. For example, Nicolau et al [14] propose an output-associative fusion framework. In our case, the fusion is based on a simple method linearly combining outputs corresponding to the predictions of the four dimensions with different systems to make the final predictions. This way, the system is able to capture the correlations between the different emotion dimensions and to increase robustness by using different modalities.

The designed system is our response to the second Audio/Visual Emotion Challenge (AVEC’12) [18]. This challenge uses the SEMAINE [10] corpus as benchmarking database. Concerning SEMAINE, as Nicolau et al. [13], we noticed some annotation issues which may directly impact the system performance. This database has been continuously annotated by humans in real-time and a delay between the affect events and the labels has thus been introduced. To avoid this issue, we present in this paper a delay probability estimation method directly used in the feature selection process.

The main contributions presented in this paper for affective signals prediction are the followings:

1. The use of the log-magnitude Fourier spectrum to include dynamic information for human emotions prediction.
3. A fast efficient framework for regression and fusion designed for real-time implementation.

The proposed framework, presented in Fig. 1, is based on audio-visual dynamic information detailed in section 2. As visual cues, we propose a set of features based on facial shape deformations, and two sets respectively based on global and local face appearance. For each visual cue, we obtain a set of temporal signals and encode their dynamic using log-magnitude Fourier spectra. Audio information is added using the provided audio features. Regarding the prediction, we propose a method based on independent systems for each set of features and for each dimension (section 3). For each system, a new correlation-based feature selection is performed using a delay probability estimator. This process is particularly well-adapted to unsynced or possibly time-delayed labels. The prediction is then done by a non-parametric regression using representative samples selected via a k-means clustering process. We finally linearly combine the 16 outputs during a fusion process to take into account dependencies between each modality and each affective dimension (section 4). Section 5 is dedicated to evaluation and analysis. Finally, conclusion and future work are presented in section 7.
2. FEATURES

In this section, we present the four different sets of features we used. We propose three multiscale dynamic feature sets based on video; the fourth one is based on audio.

For the sets of visual cues, we first extract temporal signals describing the evolution of facial shape and appearance movements before calculating multiscale dynamic features on these signals. The feature extraction process is described in Fig. 2.

2.1 Signals extraction

We extract three kinds of signals: one based on shape parameters, and two others based on global and local face appearance.

1. Shape parameters:

The first set of features we used is based on face deformation shape parameters. The initial step of this feature extraction process is the use of the 3D face tracker proposed in [16]. It detects the face area in the images with a Viola-Jones algorithm [22] before estimating the relative position of 66 landmarks using a Point Distribution Model (PDM). The position of the i^{th} landmark s_i in the image can be expressed as:

$$s_i(p) = sR(s_i + \Phi(q)) + t$$

where \bar{s}_i denotes the mean location of the i^{th} landmark and Φ the principal subspace matrix computed from training shape samples using principal component analysis (PCA). Here, $p = \{s, R, t, q\}$ denotes the PDM parameters, which consist of global scaling s, rotation R and translation t. Vector q represents the deformation parameters that describe the deformation of s_i along each principal direction.

As output of this system, we obtain temporal signals: some of them correspond to the external parameters and give information on the head position, and the others characterize deformations related to facial expressions.
2. Global appearance:

The second set of features we used is based on global face appearance. First, we warp the faces into a mean model using the point locations obtained with the face tracker. This way, the global appearance will be less sensitive to shape variations and head movements, already encoded in the first set. Then, we select the most important modes of appearance variations using PCA. We obtain a set of temporal signals by projecting the warped images on the principal modes.

3. Local appearance:

The third set is based on local face appearance. First, we extract local patches of possibly interesting areas regarding deformations related to facial expressions. We extract an area around the mouth in order to capture smiles, areas around the eyes to capture the gaze direction, around the eyebrows to capture their movements, and areas where the most common expression-related lines can appear (periorbital lines, glabellar lines, nasolabial folds and smile lines). We chose to avoid the worry lines area because of the high probability it has to be occulted by hairs. Then, we use PCA as for the global warped images to compute temporal signals corresponding to the evolution of the local appearance of the face during time.

2.2 Dynamic features

For each of these three sets, we calculate the log-magnitude Fourier spectra of the associated temporal signals in order to include dynamic information. We also calculate the mean, the standard deviation, the global energy, and the first and second-order spectral moments. We chose to compute these features every second for different sizes of windows (from one to four seconds). This multiscale extraction gives information about short-term and longer-term dynamics.

2.3 Audio features

The last set of features we used is the audio feature set given to the participants of the AVEC’12 Challenge. It contains the most commonly used audio features for the aimed task of predicting emotions from speech (energy, spectral and voice-related features).

2.4 Feature normalization

Within a set of features, the range of values can be highly different from one feature to another. In order to give the same prior to each feature, we need to normalize them. A global standardization on the whole database would be a solution but we chose to standardize each feature by subject in order to reduce the inter-subject variability. This method should be efficient under the hypothesis that the amount of data for each subject is sufficiently representative of the whole emotion space.

3. PREDICTION SYSTEM

Using each of the four feature sets, we make separate predictions for the four dimensions, leading to a total of 16 signals. The method used for each prediction is described below.
3.2 Correlation-based feature selection

We present in this paragraph a feature selection method adapted to a possibly time-delayed label. The kernel regression proposed in this paper uses a similarity measure based on distances between samples. Using all the features (including the ones that are not useful for our prediction) would corrupt the regression by adding an important noise. We need to identify the most relevant ones and then reduce the number of features that will be used in our distance calculation. In order to only select the features that are correlated to the label knowing the delay probability distribution (Eq. 2), we introduce a time-persistent-correlation-based measure, defined as follows:

\[
\rho(f_i(t), y(t)) = \int_{-\infty}^{\infty} r(f_i(t), y(t - \tau)) P(\tau) d\tau
\]

This way, we consider the correlation between the feature and the label, but also between the feature and different delayed versions of the label weighted by an estimation of the delay probability. As before, with different separate video sequences, we need to calculate the mean of this measure for the different sequences to obtain a correlation score between the \(i^{th}\) feature and the label. To simplify notations, we refer to this score as \(\rho(f_i(t), y(t))\). This measure is more robust than a simple correlation measure in the case of possibly time-delayed label (see section 5.3). By selecting features maximizing \(\rho(f_i(t), y(t))\), we select a relevant set of features.

3.3 Clustering

We present in this paragraph a clustering step with supervised weighted-distance-learning. The feature selection step presented in the previous paragraph gives a correlation score between the label and each selected feature using Eq. 3. We use these scores as the weights of a diagonally-weighted distance \(d_w\), defined as follows:

\[
d_w(X, Y) = \sqrt{X^T W Y}
\]

where \(W \in \mathbb{M}_n(\mathbb{R})\) such as:

\[
W_{ij} = \rho(f_i(t), y(t)) \delta_{ij}
\]

We perform a k-means clustering algorithm to reduce the uncertainty of the label by grouping samples that are close in the sense of the learned distance \(d_w\). We calculate the label of each group as the mean of the labels of the group. In order to initialize the algorithm, we sort out the samples by label values and gather them in k groups of the same size. We calculate the initialization seeds as the means of the features of each group’s samples. This initialization is done to ease the repeatability of the clustering and because we expect to gather samples with neighboring labels after the clustering algorithm by using the learned distance \(d_w\). This step leads to the identification of a set of representative samples.

3.4 Kernel regression

After these learning steps, the prediction is done by a kernel regression using the Nadaraya-Watson estimator ([12]). We use a radial basis function (RBF) combined with the previously learned weighted-distance \(d_w\) as kernel. Let \(\{x_j \in \mathbb{R}^n, j \in [1, m]\}\) be the feature vectors of the \(m\) representative samples obtained after the clustering step, and \(\{y_j, j \in [1, m]\}\) be the associated labels. The prediction for a sample \(s\) described by feature vector \(x_s \in \mathbb{R}^n\) is given by the following formula:

\[
\hat{y}(s) = \frac{\sum_{j=1}^{m} K_s(x_s, x_j) y_j}{\sum_{j=1}^{m} K_s(x_s, x_j)}
\]

where \(\sigma\) is the spread of the radial basis function and \(K\) is defined as:

\[
K_s(x_s, x_j) = e^{-\frac{d_w(x_s, x_j)^2}{\sigma}}
\]

As a final step, we proceed to a temporal smoothing to reduce the noise of the regressor output.

4. FUSION

Using the regression method described in the previous section, we obtain 16 signals, which are the predictions of the four dimensions using the four different sets of features. In order to fuse these signals and make the final prediction of the four dimensions, we chose to use local linear regressions to estimate linear relationships between the signals and the labels. More precisely, the coefficients of these linear relationships are estimated as the means of the different linear regressions coefficients weighted by the Pearson’s correlation between the predicted signal and the label of each sequence. Let \(\{y_j', i \in [1, n_s], j \in \{V, A, E, P\}\}\) be the labels of the \(n_s\) video sequences of the learning set. Let \(\{S_i, i \in [1, n_s]\}\) be the matrices containing the 16 predictions of our system on the \(n_s\) sequences of the training set (previously standardized). We estimate the four vectors of coefficients \(\alpha_j \in \mathbb{R}^{16}\) of the linear relationships as follows:

\[
\alpha_j = \frac{\sum_{i=1}^{n_s} r(S_i y_j') \beta_i}{\sum_{i=1}^{n_s} r(S_i y_j')}
\]

where \(\beta_i = (S_i^T S_i)^{-1} S_i^T y_j'\) is the ordinary least squares coefficients vector for sequence \(i\) and label \(j\). We can then calculate our final predictions for the four dimensions \(\{y_j, j \in \{V, A, E, P\}\}\) as: \(y_j = \alpha_j S_i\) where \(S_i\) is a matrix containing the 16 standardized predictions of our regressors on the test sequence we aim to predict.

5. EXPERIMENTS

In this section, we present some experiments we carried out to evaluate the different key points of our method. In order to be robust in generalization, we chose to optimize the hyperparameters in subject-independent cross-validation (each training partition does not contain the tested subject).

As evaluation procedure, we first present the results of the full system (with feature normalization by subject, our time-persistent-correlation measure and our regression framework). Then, we evaluate the contribution of each key point by replacing it by a more commonly used process (global normalization, Pearson’s correlation and Support Vector Regression):

1. Normalization by subject, Time-persistent-correlation, Kernel regression (sect. 5.1)
2. Global normalization, Time-persistent-correlation, Kernel regression. (sect. 5.2)

3. Normalization by subject, Standard correlation, Kernel regression. (sect. 5.3)

4. Normalization by subject, Time-persistent-correlation, SVR. (sect. 5.4)

5.1 Fusion evaluation

The proposed fusion method, which is based on a simple linear combination of the inputs learned via local linear regressions, is particularly fast and well-suited for a real-time system. To evaluate the efficiency of this fusion method and the contribution of each feature set, we present the results we obtained by learning on the training set and testing on the development set in Table 1.

Table 1: Pearson’s correlations averaged over all sequences of the AVEC’12 development set. Results are given for valence, arousal, expectancy and power. We also indicate the mean of these four dimensions. S corresponds to the shape features. GA to the global appearance features. LA to the local appearance features and A to the audio features. F corresponds to the fusion.

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Aro</th>
<th>Exp</th>
<th>Pow</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.319</td>
<td>0.538</td>
<td>0.365</td>
<td>0.429</td>
<td>0.413</td>
</tr>
<tr>
<td>GA</td>
<td>0.281</td>
<td>0.498</td>
<td>0.347</td>
<td>0.431</td>
<td>0.389</td>
</tr>
<tr>
<td>LA</td>
<td>0.354</td>
<td>0.470</td>
<td>0.323</td>
<td>0.432</td>
<td>0.395</td>
</tr>
<tr>
<td>A</td>
<td>-0.057</td>
<td>0.445</td>
<td>0.280</td>
<td>0.298</td>
<td>0.241</td>
</tr>
<tr>
<td>F</td>
<td>0.350</td>
<td>0.644</td>
<td>0.341</td>
<td>0.511</td>
<td>0.461</td>
</tr>
</tbody>
</table>

We can see that visual features give better results than audio features. Local appearance-based features give a better valence prediction than the other sets. The fusion system significantly improves arousal and power predictions giving a mean score increased by 11.7%. We can notice that when the four predictions (using each set of features) are accurate, the fusion is more successful. On the contrary, the prediction scores of valence and expectancy are lower and the fusion does not improve the system performance.

5.2 Normalization evaluation

In this subsection, we evaluate the effect of the standardization of the features that we performed by subject in order to reduce the inter-subject variability. We compare the results we obtained (presented in the previous table) to those achieved with a global standardization on the whole training set (Table 2).

The normalization by subject has increased the mean score by 9.8%. The effect on valence is more important than on the other dimensions, which can be explained because the selected features for valence predictions are more sensitive to human morphological variations. Most of the features selected for the three other dimensions are high-frequency subbands energies extracted from the temporal signals, which are more robust to morphological variations than the signals’ mean values that seem to be useful to predict valence.

Table 2: Pearson’s correlations averaged over all sequences of the AVEC’12 development set in the case of a global standardization instead of a standardization by subject.

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Aro</th>
<th>Exp</th>
<th>Pow</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.079</td>
<td>0.526</td>
<td>0.373</td>
<td>0.463</td>
<td>0.361</td>
</tr>
<tr>
<td>GA</td>
<td>0.102</td>
<td>0.471</td>
<td>0.355</td>
<td>0.416</td>
<td>0.335</td>
</tr>
<tr>
<td>LA</td>
<td>0.314</td>
<td>0.436</td>
<td>0.311</td>
<td>0.441</td>
<td>0.376</td>
</tr>
<tr>
<td>A</td>
<td>-0.069</td>
<td>0.509</td>
<td>0.227</td>
<td>0.254</td>
<td>0.230</td>
</tr>
<tr>
<td>F</td>
<td>0.199</td>
<td>0.633</td>
<td>0.331</td>
<td>0.515</td>
<td>0.420</td>
</tr>
</tbody>
</table>

5.3 Time-persistent-correlation evaluation

For evaluating the efficiency of the new proposed correlation-based measure, we compare our results to those we obtain by selecting the features with a standard Pearson’s correlation measure which does not take the delay into account. The results are presented in Table 3.

Table 3: Pearson’s correlations averaged over all sequences of the AVEC’12 development set in the case of the use of Pearson’s correlation instead of our new time-persistent-correlation for feature selection.

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Aro</th>
<th>Exp</th>
<th>Pow</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.299</td>
<td>0.527</td>
<td>0.273</td>
<td>0.413</td>
<td>0.378</td>
</tr>
<tr>
<td>GA</td>
<td>0.297</td>
<td>0.489</td>
<td>0.279</td>
<td>0.392</td>
<td>0.364</td>
</tr>
<tr>
<td>LA</td>
<td>0.303</td>
<td>0.464</td>
<td>0.294</td>
<td>0.411</td>
<td>0.368</td>
</tr>
<tr>
<td>A</td>
<td>0.017</td>
<td>0.426</td>
<td>0.261</td>
<td>0.285</td>
<td>0.242</td>
</tr>
<tr>
<td>F</td>
<td>0.333</td>
<td>0.652</td>
<td>0.301</td>
<td>0.453</td>
<td>0.435</td>
</tr>
</tbody>
</table>

The use of the proposed time-persistent-correlation-based measure has increased the mean score by 6%, which can be explained by the improved robustness of the proposed measure to possibly time-delayed labels.

5.4 Regressor evaluation

Our regression method, which consists of a clustering and a kernel regression, is particularly fast to learn and compute and is therefore suited for real-time implementation. We compare our method to the commonly used Support Vector Regression combined with the kernel defined in Eq. 5. As for our method, the hyperparameters are optimized in subject-independent cross-validation. The obtained results are presented on Table 4.

Table 4: Pearson’s correlations averaged over all sequences of the AVEC’12 development set with a Support Vector Regression.

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Aro</th>
<th>Exp</th>
<th>Pow</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.286</td>
<td>0.504</td>
<td>0.360</td>
<td>0.442</td>
<td>0.398</td>
</tr>
<tr>
<td>GA</td>
<td>0.252</td>
<td>0.393</td>
<td>0.347</td>
<td>0.404</td>
<td>0.349</td>
</tr>
<tr>
<td>LA</td>
<td>0.363</td>
<td>0.473</td>
<td>0.309</td>
<td>0.411</td>
<td>0.389</td>
</tr>
<tr>
<td>A</td>
<td>-0.089</td>
<td>0.400</td>
<td>0.232</td>
<td>0.380</td>
<td>0.231</td>
</tr>
<tr>
<td>F</td>
<td>0.275</td>
<td>0.591</td>
<td>0.297</td>
<td>0.493</td>
<td>0.414</td>
</tr>
</tbody>
</table>

The mean score after fusion has increased by 11% by using our method. However, we can see that the fusion is less
efficient with SVR than with our regression method. It can be explained by the fact that the fusion coefficients have been estimated using the SVR predictions on the training set. A likely explanation could be that SVR are prone to over-fitting. A solution to this issue would be to learn the fusion coefficients in cross-validation. It is thus not relevant to compare the results after fusion. It is more reliable to compare our regression method to the SVR feature set by feature set. We obtain, in this case, an averaged gain of 5%.

6. RESULTS ON THE TEST SET

We learned our system on the concatenation of the training and the development sets to compute our predictions on the test set. We compare in Table 5 our results to those given in the baseline paper [18]. We can notice that the results obtained on the test set are quite similar to those obtained on the development set. This highlights the high generalization power of the proposed framework. It can be explained by the small number of representative samples for the kernel regression (60 in our system) which limits the flexibility of the model and allows the system to only capture important trends in the data.

Table 5: Pearson’s correlations averaged over all sequences of the AVEC’12 test set.

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Aro</th>
<th>Exp</th>
<th>Pow</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>0.341</td>
<td>0.612</td>
<td>0.314</td>
<td>0.556</td>
<td>0.456</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.146</td>
<td>0.149</td>
<td>0.110</td>
<td>0.138</td>
<td>0.136</td>
</tr>
</tbody>
</table>

7. CONCLUSION

We presented a complete framework for continuous prediction of human emotions based on features characterizing head movements, face appearance and voice in a dynamic manner by using log-magnitude Fourier spectra. We introduced a new correlation-based measure for feature selection and evaluated its efficiency and robustness in the case of possibly time-delayed labels. We proposed a fast regression framework based on a supervised clustering followed by a Nadaraya-Watson kernel regression that appears to outperform, for the aimed task, Support Vector Regression. Our fusion method is based on simple local linear regressions and significantly improves our results. Because of the high power of generalization of our method, we directly learned our fusion parameters using our regressors outputs on the training set. In order to improve the fusion for methods that are more prone to over-fitting, we would have to learn these parameters in cross-validation. Our system has been designed for the Audio/Visual Emotion Challenge (AVEC’12) which uses Pearson’s correlation as evaluation measure. Therefore, every step of our method has been built and optimized to maximize this measure. An accurate system for everyday interactions would need to be efficient in terms of correlation but also in terms of Root-Mean-Square Error (RMSE). Some modifications on our system would be needed to increase its performance regarding this measure. The SE-MAINe database on which our system has been learned and tested contains videos of natural interactions but recorded in a very constraint environment. A perspective for adapting these kinds of human emotion prediction systems to real conditions, as for assistance robotics, would be to learn the system on “in the wild” data.

8. ACKNOWLEDGMENTS

This work has been partially supported by the French National Agency (ANR) in the frame of its Technological Research CONTINT program (IMMOM, project number ANR-09-CORD-012), the French FUI project PRAMAD2 (project number J11P159) and the Cap Digital Business cluster for digital content.

9. REFERENCES

