We present a cognitive architecture for humanoid robots interacting with objects and caregivers. The architecture is foundational to the MACSi Project: it is designed to support experiments to make a humanoid robot gradually enlarge its repertoire of known objects and skills combining autonomous learning, social guidance and intrinsic motivation. This knowledge may lead the robot to autonomous learning of affordances.

COGNITION
- Persistent knowledge, learning processes, reasoning, affordances, ...
- Autonomous behavior
- Decision making
- Social guidance

EGOSPHERE
- Proprioceptive data
- Episodic knowledge
- Contextual information (people, objects...)

PERCEPTION
- Cameras
- Proprioception
- Sound sensor
- Rgbd-sensor

ACTION
- Motor commands

OBJECTS RECOGNITION
- Objects in the scene are extracted from depth maps through segmentation; their visual appearance is characterized by complementary features such as SURF and SUPERPIXELS' properties.

MULTIMODAL PEOPLE TRACKING
- Human caregivers interacting with the robot are identified through a multimodal approach, combining embodied information (cameras) with external sensors (rgbd-sensors and microphone array).

USING SOCIAL GUIDANCE
- The human caregiver asks the robot to recognize an object, take it and put it in a box: on success, a positive reward is given to the robot.

TOWARDS LEARNING AFFORDANCES
- The robot pushes an object to detect its motion and learn the effect of its action (e.g. the blue car rolls).