Assessment of an automatic prosthetic elbow
control strategy using residual limb motion for
transhumeral amputated individuals with socket or
osseointegrated prostheses
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Abstract—Most transhumeral amputated individuals deplore
the lack of functionality of their prosthesis due to control-related
limitations. Commercialized prosthetic elbows are controlled
via myoelectric signals, yielding complex control schemes when
users have to control an entire prosthetic limb. Limited control
yields the development of compensatory strategies. An alternative
control strategy associates residual limb motions to automatize
the prosthetic elbow motion using a model of physiological
shoulder/elbow synergies. Preliminary studies have shown that
elbow motion could be predicted from residual limb kinematic
measurements, but results with transhumeral amputated indi-
viduals were lacking. This study focuses on the experimental
assessment of automatic prosthetic elbow control during a reach-
ing task, compared to conventional myoelectric control, with six
transhumeral amputated individuals, among whom, three had an
osseointegrated device. Part of the recruited participants had an
osseointegrated prosthetic device. The task was achieved within
physiological precision errors with both control modes. Automatic
elbow control reduced trunk compensations, and restored a
physiologically-like shoulder/elbow movement synchronization.
However, the kinematic assessment showed that amputation and
prosthesis wear modifies the shoulder movements in comparison
with physiological shoulder kinematics. Overall, participants
described the automatic elbow control strategy as intuitive, and
this work highlights the interest of automatized prosthetic elbow
motion.

I. INTRODUCTION

Progress in mechatronics and robotics has facilitated the
production of prostheses with an increasing number of active
joints, like the Luke Arm for upper limb amputation [1]. Al-
though the numerous degrees of freedom (DoFs) could enable
a more human-like motion of the prosthesis, there has been
a growing gap over the last decades between hardware im-
provements and control developments. Upper limb prosthetic
users struggle to use modern devices, blaming various factors,
such as phantom limb pain, socket discomfort or slippage,
and counter-intuitive limiting control strategies. Myoelectric
control has become for the last decades a common control
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method of prosthetic end-effectors [2], [3]. Myoelectric control
derives from the residual limb’s muscular electrical activity
that is measured with surface electrodes (generally two) placed
inside the prosthetic socket. The control scheme associates
residual muscles’ contractions to a prosthetic movement: for
instance, residual biceps contractions control the prosthetic
hand closing, and residual triceps contractions control the
hand opening. Since all the myoelectrically-driven prosthetic
joints are being controlled by the same two residual muscles,
the user needs to switch in between prosthetic joints to be
able to control one joint after the other, yielding a sequential
control pattern, for instance controlling wrist rotation, then
hand opening. Hence, as the number of prosthetic joints
increases with the level of amputation, the overall control
strategy becomes more difficult with only two control inputs.
That is why most transhumeral amputated individuals are often
fitted with only a myoelectric hand, and eventually a myo-
electric wrist, but rarely with a myoelectric elbow, although
commercially available, preferring a cable-driven or manually-
locked joint. The difficulty of controlling a prosthetic limb,
especially for high amputation levels, causes the development
of body compensatory strategies, with large trunk and shoulder
displacements [4]. In addition to functionally impairing the
user, such important modifications of the physiological be-
havior (i.e. movements without amputation) can lead to severe
musculoskeletal disorders [5].

To overcome some of the limitations of conventional my-
oelectric control, pattern recognition approaches have been
developed for over 40 years [6], aiming at a more precise
decoding of myoelectric signals. These methods rely on
finding distinct muscle activation patterns to control more
types of movements using the same number of myoelec-
tric inputs [7]. Pattern recognition-based control enables the
utilization of several prosthetic movements without having
a dedicated myoelectric signal to switch between the joints
(for instance co-contractions or changes in contraction in-
tensity). This requires the use of multiple recording sites,
a precise extraction of different signal characteristics, and
a multidimensional classification architecture [8]. A surgi-
cal technique, referred to as Targeted Muscle Reinnervation
(TMR), increases the number of recording sites by rerouting
amputated nerve branches (for instance brachial plexus nerves)
to other muscles (for instance chest muscles) enabling vol-



untary contractions of these newly reinnervated muscles [9].
Combining pattern recognition-based techniques to TMR can
enable simultaneous control of several prosthetic joints [10].
While they are extensively studied in research applications,
pattern recognition-based methods, like the COAPT system
(http://www.coaptengineering.com/), have been only recently
applied to commercialized prostheses. This delay can be
explained by the numerous limitations of myoelectric signals.
Indeed, the sensitivity to electrode shift, perturbations like
muscle fatigue, or sweat [8] leads to a major robustness issue
that is still to be addressed in current systems.

Alternative control inputs have been investigated in the
literature, such as the contraction-induced skin vibrations, the
contraction-induced skin deformation [11], with results that
are not superior to myoelectric results. There have been inves-
tigations on the residual limb motion as a promising source
of control inputs for prosthetic joints control. Indeed, most
transhumeral amputated individuals have a preserved shoulder
mobility, that is constrained for now by a harness. Some
studies worked on a control strategy based on the shoulder
joint mobility in the horizontal or vertical plane to drive
the end-effector action [12], however it requires voluntary
translation shoulder movements to control the prosthesis, like
myoelectric control requires voluntary muscle contractions.
Therefore, there is still a need for simultaneous and easy
control strategy over artificial joints.

Upper limb motor control consists mostly in focusing on
the task and the hand motion, while none or few of the
attention is given to the individual control of each muscle
or joints. The result is a coordinated movement of the joints
along the upper limb, also know as a synergy for a given task.
For instance, shoulder and elbow extends simultaneously and
without reaching the individual’s awareness while reaching for
a target [13], [14], [15]. Several studies have shown that these
synergies can be modeled, and thus, used to derive distal joint
movements from measurements of proximal joints kinematics
[16], [17], [18]. The study by Kaliki et al. [17] showed that
the elbow flexion angle and the forearm rotation angle could
be predicted using offline measurements of three shoulder
angles and two shoulder translations, and an artificial neural
network-based model of the upper limb joints motion for a
reaching task. Based on these literature results, preliminary
work focused on developing a shoulder/elbow coordination
model for the reaching task using physiological kinematic data.
Good offline prediction results of the elbow kinematics were
obtained in [19] using two shoulder angular velocity values as
model inputs, showing that automatic prosthetic elbow control
was possible.

Most of training data sets in the literature are recorded
using camera-based motion capture systems, which are not
compatible with the environment of prosthetic users. Using
wearable kinematic sensors is fundamental in the development
of prosthetics. A good option is Inertial Measurement Units
(IMUs) that can be interfaced with the existing hardware,
and that provide reliable position and velocity information.
Some recent studies used IMUs to measure the shoulder
motion, but the shoulder/elbow models were only tested offline
[20], [21]. The only results to the authors’ knowledge of

online prosthesis control using a shoulder motion-based con-
trol strategy is described in Alshammary et al. [22] whereby
the participants controlled a virtual prosthesis driven by a
shoulder/elbow model based on real time measurements of the
participants’ shoulder movements. Based on these literature
results, a preliminary study, described in [23], was designed
with non-amputated participants wearing a prosthetic elbow
prototype which was driven by the participants’ shoulder
motion. However, it showed the need for tests with amputated
individuals, as the quality of the prototype’s attachment to
the arm was poor. In [24], a first test was thus conducted
with one transhumeral amputated individual who performed
successfully a reaching task with the prosthesis prototype that
was automatically-driven by the participant’s residual limb
motion and a shoulder/elbow synergy model built from move-
ment recordings of two non-amputated individuals. Despite
the promising results of the literature and preliminary studies,
there is still a lack of extensive experimental evaluation
conducted on amputated individuals to assess the performance
of a prosthetic elbow automatically-driven by the residual limb
motion, based on a shoulder/elbow coordination model built
from recordings of several physiological reaching movements.

In the present paper, the automatic elbow control strategy
was tested on a reaching task with six individuals amputated
at the transhumeral level, in comparison to a conventional
myoelectric elbow control strategy. Among the participants,
some were equipped with an osseointegrated device that did
not require the use of a traditional harness to hold the prosthe-
sis. The participants, the prosthesis prototype, the experiment
protocol and the data analysis are described in Section II. The
results, presented in Section III and discussed in Section IV,
showed an increase in body compensations when participants
used the conventional myoelectric control, whereas overall
body movements with the automatically-driven elbow were
similar to a physiological gesture in terms of precision error
and body behavior.

II. MATERIAL AND METHODS
A. Participants

This work was carried out in accordance with the recom-
mendations of the Université Paris Descartes ethic committee
CERES, that had approved the protocol covering preliminary
experiments at the Louis Pierquin Center (Institut Régional
de Médecine Physique et de Réadaptation, IRR) in Nancy. In
addition, the protocol was approved by the ethical committees
of Vistra Gotalandsregionen in Sweden, to conduct the exper-
iment with osseointegrated participants. All participants gave
written informed consent in accordance with the Declaration
of Helsinki. To be included into the trial, participants had to
be transhumerally amputated, not to suffer any residual limb
pain, to have a good residual limb mobility with a preserved
brachial plexus, to be equipped for more than a month with
a myoelectric end-effector, and to have a residual limb length
and strength that allowed the participant to lift the prosthesis.

Fourteen participants without amputation took part in a
preliminary study aimed at gathering physiological kinematic
data of reaching gestures. The only inclusion criteria was a






