

Ecole doctorale SMAER Sciences Mécaniques, Acoustique, Electronique, Robotique

Thesis subject 2021

Laboratory : ISIR Institut des Systèmes Intelligents et de Robotique

University: Sorbonne Université – CNRS UMR7222

Title of the thesis: Design and control of a flexible manipulator for fruit picking

Thesis supervisor: Faïz Ben-Amar

Email contact: amar@isir.upmc.fr

Number of phd student: 4 with 3 co-supervised

Co supervisor : Jérôme Szewzyck

Collaborations within the thesis: Muséum National d'Histoire Naturelle

This subject can be published on the doctoral school's web site: Yes

Thesis's summary (abstract):

The goal of the thesis is to develop a flexible manipulator like a trunk for grasping of a fragile object such as a fruit. This robotic object would address three research issues, design, modeling and control, and finally machine learning, which are in an ideal world, should be addressed in a joint and integrated approach, called sometimes "hardware-software co-design". The design will be based a priori on a deformable continuum structure without articulation and with a cable transmission. We will study particularly the routing of the cables, such as the helical and/or internal routings and their influences especially on the working space of the manipulator and pose repeatability. The modeling and control will seek to find a good tradeoff between model fidelity and computing time efficiency. For this purpose, the use of a reduced model of a deformable body (Cosserat beam model or reduced model from FEM), combined with model predictive control MPC, is a relevant solution capable of taking into account the under-actuation, kinematic redundancy and physical constraints such as actuator limitations. Finally, learning from real and/or simulated data is a interesting way that we will also explore because it is more robust for systems that are difficult to model and that present a large number of variables, such as a redundant deformable object in multiple interaction with object having different geometry and stiffness.

Ecole doctorale SMAER Sciences Mécaniques, Acoustique, Electronique, Robotique

For the developed version, please see the French version or contact supervisors.

 ED SMAER (ED391)

 Tour 45-46 Bureau 205- case courrier 270- 4, place Jussieu - 75252 PARIS Cedex 05

 [®]: 01 44 27 40 71
 <u>charlotte.vallin@sorbonne-universite..fr</u>
 Sujet de thèse_21