Home » Nous rejoindre » Opportunités

Opportunités

Offres d’emploi

Fonctions : Gestionnaire RH, en contrat à durée déterminée d’un an dès que possible 

Emploi-type : Technicien/ne en gestion RH – (REFERRENS – J4D43 / J4C42)

Catégorie : B

Corps : niveau Technicien de recherche

BAP : J

Mission :

Il s’agit d’un contrat à durée déterminée de 1 an pour réaliser des fonctions polyvalentes de gestion RH et d’accueil au sein du service administratif du laboratoire ISIR.

 

Activités principales :

  • Instruire les dossiers de demande de recrutement du laboratoire auprès des tutelles (lab&co / CANOPE // SIFAC)
  • Alerter sur les situations spécifiques (lors du recrutement ou au cours du contrat)
  • Faire le suivi des entrées / prolongations / sorties des personnels
  • Suivre les modifications dans les dossiers des personnels
  • Renseigner les bases des tutelles (RESEDA)
  • Gérer la base des congés (AGATE)
  • Instruire les accueils de stagiaires (conventions, accueil physique)
  • Gérer le versement des gratifications / transport des stagiaires dans SIFAC
  • Renseigner la base des stagiaires du laboratoire
  • Accueil physique et téléphonique des visiteurs afin de les renseigner et les adresser aux personnels
  • Gestion du courrier arrivé/départ
  • Réception des livraisons

Autres activités :

  • Participer à l’activité du service administratif pour assurer la continuité de service

Télécharger l’offre d’emploi

Intitulé du poste: Ingénieur·e en Interaction Humain-Machine (IHM) – Coordination Technique

Contexte et objectifs :

Ce poste d’ingénieur·e s’inscrit dans les activités du LiLLab (https://www.lillabneurodev.fr/), living lab nationale inscrit dans la stratégie pour les troubles du neuro-développement.

Les activités de recherche du LiLLab, menées au sein de l’équipe ACIDE de l’ISIR, portent sur l’Interaction Humain-Machine dans le champ des troubles du neuro-développement. Nous menons des études auprès des personnes concernées en collaboration avec plusieurs équipes de recherche et cliniques.

Le LiLLab recrute un ingénieur ou une ingénieure en charge de la coordination technique des travaux en interaction humain-machine dans le champ des troubles du neuro-développement

Ce poste est un contrat de 24 mois, avec une possibilité d’extension jusqu’à fin 2027.

Missions :

– Coordonner les travaux techniques liés à l’interaction humain-machine dans le domaine des troubles du neuro-développement.

– Concevoir et développer des interfaces utilisateur adaptées aux personnes avec des troubles du neuro-développement.

– Collaborer avec les équipes de recherche, cliniques et les utilisateurs finaux pour assurer le développement de solutions pertinentes et efficaces.

– Réaliser des études et des tests utilisateurs pour évaluer et améliorer les interfaces.

– Développer des prototypes et des maquettes fonctionnelles.

– Mettre en œuvre des méthodologies de conception centrées sur l’utilisateur et des techniques de design thinking.

– Analyser les comportements des utilisateurs et collecter des données pour optimiser les interfaces.

– Rédiger des rapports techniques et scientifiques.

– Assurer une veille technologique sur les nouvelles tendances et innovations en matière d’IHM et de neuro-développement.

Profil recherché :

Diplôme d’ingénieur ou Master en informatique, interaction humain-machine, sciences cognitives, ergonomie ou domaine équivalent.

Informations générales : 

– Type de poste : Ingénieur·e

– Date de début de contrat : à partir de Septembre 2024

– Durée du contrat : 24 mois

– Quotité de travail : 100%

– Niveau d’études souhaité : Master / Ecole d’Ingénieur·e / Doctorat

– Montant rémunération : standard sur grille

– Laboratoire d!accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personne à contacter :

– Mohamed Chetouani

– Tel : +33 1 44 27 63 08

–  Candidature : Les candidats intéressés doivent soumettre les documents suivants par email dans un fichier PDF unique à l’adresse suivante: mohamed.chetouani[@]sorbonne-universite.fr avec comme sujet « Candidature LiLLab » : (1) Curriculum vitae avec 2 références (les lettres de recommandation sont également les bienvenues) et (2) Résumé d’une page de vos antécédents et intérêts de recherche.

– Date limite de candidature : 17 juin 2024.

Télécharger la fiche de poste

Postdoc « Multimodal Machine Learning for User Modeling and Profiling »

Objectives:

Personalized Human-Machine Interaction systems aim to provide tailored experiences that cater to the individual needs and preferences of human users. To achieve this, these systems rely on user models derived from user profiles and observations of human actions. However, adapting to changing contexts or individuals presents numerous challenges, including multimodal data collection and interpretation, privacy concerns, and transparency issues. There is a pressing need to develop new representations of human behavior that can capture the diversity among users while safeguarding their privacy.

This post-doctoral position is centered on the development of human-centered machine learning techniques aimed at personalized adaptation in interactive applications, with an emphasis on human-robot interaction. Recent strides in artificial intelligence, especially in the domain of deep learning, have unlocked advanced methodologies for user profiling and adaptation. Notably, representation learning (deep learning) and reasoning (Large Language Models, LLMs) have emerged as influential approaches, offering promising avenues for comprehending user behavior and providing tailored experiences in interactive applications. Rooted in a human-centered approach, the position will address ethical issues inherent in both the modeling process (e.g., biases, privacy concerns) and experimental design (e.g., working with vulnerable participants).

This position is for 24 months contract, but there is a possibility to be extended depending on the performance and circumstances.

Responsibilities:

  • Develop advanced user modeling techniques to accurately represent user preferences, behaviors, and characteristics based on interaction data with AI systems.
  • Investigate methods for integrating various types of data, including user interactions, feedback, and contextual information, to build comprehensive user profiles.
  • Explore innovative approaches for dynamic user modeling that can adapt to changes in user preferences and behavior over time.
  • Address privacy concerns by developing techniques for anonymizing or obfuscating sensitive user data while preserving model effectiveness.
  • Collaborate with interdisciplinary teams including computer scientists, psychologists, and designers to ensure the usability and effectiveness of developed techniques.
  • Publish research findings in top-tier conferences and journals in the field of Human-Machine Interaction and Machine Learning

Requirements:

The ideal candidate must have a PhD degree and a strong background in machine learning, human-machine interaction or robotics.

The successful candidate should have:

  • Experience in human-machine interaction
  • Good knowledge of Machine Learning Techniques
  • Good knowledge of experimental design and statistics
  • Excellent publication record
  • Strong skills in Python
  • Willing to work in multi-disciplinary and international teams
  • Good communication skills

General information:

– Contract start date: from September 2024

– Contract duration: 24 months

– Level of study required: doctorate

– Salary: standard salary scale

– Host laboratory: ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Person to contact:

– Mohamed Chetouani

– Tel: +33 1 44 27 63 08

– Email : mohamed.chetouani@sorbonne-universite.fr

– Application: Interested candidates should submit the following by email in a single PDF file to: mohamed.chetouani[@]sorbonne-universite.fr with the subject: « Application Post-Doc Multimodal Representation » with:

  1. Curriculum vitae with 2 references (recommendation letters are also welcome)
  2. One-page summary of research background and interests
  3. At least three papers (either published, accepted for publication, or pre-prints) demonstrating expertise in one or more of the areas mentioned above
  4. Doctoral dissertation abstract and the expected date of graduation (for those who are currently pursuing a Ph.D)

Deadline for applications: 17 May 2024

Download this offer

Fonctions : Assistant-e en gestion financière et comptable

Emploi-type : [Referens] J3E47 – Assistant-e en gestion financière et comptable

Catégorie : A

Corps : ASSISTANT INGENIEUR DE RECH.ET FORMATION

BAP : J – Gestion et pilotage

Mission :

Réaliser des fonctions financières au sein du service financier du service administratif de l’ISIR. L’assistant-e doit assurer la gestion financière et comptable des dépenses et/ou recettes dans le respect des techniques, des règles et des procédures applicables au domaine de la gestion financière et/ou comptable.

Activités principales :

  • Assurer l’ensemble des opérations financières (achats, missions, commandes de vente, suivi des coûts de recrutement) dans le respect des règles du domaine en utilisant les systèmes d’information des tutelles (SIFAC/GESLAB/NEO/SIMBAD/CADROL…) pour plusieurs équipes de recherche et services de l’unité.
  • Réaliser le suivi des crédits et conventions pour les porteurs de projets en coordination avec les autres gestionnaires financières du laboratoire pour plusieurs équipes de recherche de l’unité.
  • Participer à l’établissement des états et bilans comptables et/ou financiers et les tableaux de bord nécessaires au suivi de l’activité, à partir des systèmes d’information des tutelles.
  • Participer à la mise en oeuvre de la politique d’achat.
  • Transmettre les informations pratiques sur les procédures administratives, financières et/ou comptables, sur l’évolution de la législation et de ses conséquences.
  • Suivre l’évolution des règles, directives et procédures financières et/ou comptables.
  • Classer et archiver les justificatifs des opérations financières et/ou comptables.
  • Répondre aux audits des tutelles

Autres activités :

Participer à l’activité du service administratif pour assurer la continuité de service.

Conduite de projets : Non

Encadrement : Non

Télécharger la fiche de poste

Titre du poste : Post-doctorat en « Éthique de l’IA neuro-computationnelle »

Contexte :

Le projet européen CAVAA (https://cavaa.eu/) propose de réaliser une théorie de la conscience instanciée sous la forme d’une architecture informatique intégrée et de ses composants afin d’expliquer la conscience dans les systèmes biologiques et de l’intégrer dans les systèmes technologiques. Dans un monde régi par des états cachés, la conscience permet de traiter l’ « invisible », depuis les environnements inexplorés (passés et futurs contrefactuels) jusqu’aux interactions sociales qui dépendent des états internes des agents et des normes morales. En particulier, nous étudierons la capacité et la propension des agents dotés d’une telle architecture cognitive à raisonner, à prendre des décisions ou à revenir sur des expériences passées, à réfléchir sur ce qui était bien ou mal selon certaines normes morales, et sur les états futurs possibles qui pourraient être bien ou mal. L’ingénierie de la conscience de CAVAA s’accompagne d’un cadre éthique à l’égard des utilisateurs humains et des artefacts conscients dans le spectre plus large de l’IA digne de confiance, en tenant compte des objectifs partagés, des contrefactuels et des projections vers de nouveaux scénarios futurs, ainsi que de la prédiction de l’impact des choix. CAVAA vise à offrir une meilleure expérience à l’utilisateur grâce à sa capacité d’explication, d’adaptation et de lisibilité.

Lieu et environnement :

Le poste de post-doctorant sera situé à l’Institut des Systèmes Intelligents et de Robotique (ISIR, http://www.isir.upmc.fr), Paris, France. L’ISIR appartient à Sorbonne Université, au CNRS et à l’INSERM, et est situé dans le centre de Paris. Il n’est pas nécessaire de parler ou de comprendre le français. Ce travail se fera en étroite collaboration avec les philosophes, les ingénieurs et les neuroscientifiques computationnels du consortium CAVAA.

Missions :

Le travail post-doctoral se concentrera sur le raisonnement éthique à travers la virtualisation, la délibération et l’alignement sur les valeurs humaines. Le cadre théorique sera ancré dans l’apprentissage par renforcement probabiliste fondé sur un modèle (model-based), étendu pour inclure les valeurs homéostatiques, épistémiques et sociales, y compris les conventions sociales et les normes morales comme point de départ. Les travaux étudieront l’apprentissage par l’interaction avec l’environnement et avec d’autres agents, la prise de décision sociale, la simulation mentale et le raisonnement contrefactuel pour informer les humains des conséquences potentielles à long terme de leurs actions. Le modèle sera confronté à des données expérimentales sur la prise de décision humaine face à divers dilemmes sociaux et moraux. Le modèle sera également intégré dans l’architecture cognitive CAVAA et appliqué à des agents artificiels et à des robots dans des scénarios virtuels et réels impliquant la navigation spatiale et l’interaction sociale.

Profil recherché :

Nous recherchons des candidats très motivés ayant un solide dossier académique. Une excellente expérience est attendue à l’interface entre les neurosciences computationnelles et l’apprentissage automatique. Une expérience significative dans les architectures cognitives et la modélisation computationnelle pour les neurosciences, la psychologie, l’IA ou la robotique cognitive sera appréciée. Un intérêt marqué pour la philosophie de l’esprit et la philosophie morale est attendu. Admissibilité : Doctorat dans une discipline quantitative. Il n’y a pas de critère de nationalité ou d’âge.

Compétences requises :

La maîtrise de l’apprentissage par renforcement et de la théorie des jeux, un très bon niveau en mathématiques appliquées et des compétences de programmation avancées en C++ moderne et en python sont nécessaires.

Très bon niveau d’anglais (écrit et oral).

Informations générales :

– Type de poste : Post–Doc

– Date de début de contrat : 01/08/2024

– Durée du contrat : 26 mois (jusqu’au 30/09/2026)

– Quotité de travail : 100%

– Expérience souhaitée : Débutant à 4 ans

– Niveau d’études souhaité : Doctorat

– Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personne à contacter :

– Mehdi Khamassi

– Tel:+33650764492

– Email : mehdi.khamassi@sorbonne-universite.fr

– Envoyer votre candidature par mail, avec [CAVAA post-doc application] en objet, un CV, une lettre de motivation (max 2 pages) et une liste de deux références.

– Date limite de dépôt de la candidature : 07/05/2024

Télécharger l’offre d’emploi

Post-doctorat « Simuler le toucher social à distance via le son »

Contexte : Audio-touch : Simuler le toucher social à distance par le son

Le poste s’inscrit dans le cadre d’un projet financé par l’Agence Nationale de la Recherche (Modulation Multisensorielle et Affective du Toucher : Interaction et Intentionnalité). Ce projet rassemble un consortium de trois laboratoires de recherche, CNRS-LISN (O. Grynszpan, F. Bimbard, E. Prigent), UTC-Heudiasyc (I. Thouvenin) et SU-ISIR (M. Auvray & C. Pelachaud). L’objectif du consortium est de simuler la sensation d’être touché lors d’une interaction sociale dans des environnements virtuels. Ceci inclut l’étude des multiples dimensions impliquées dans le toucher social (i.e., sensations physiques, contenu émotionnel, et sens de l’action), la sonification du toucher social, la conception d’agents virtuels dotés de la capacité de produire du toucher social.

Dans le cadre de ce consortium, l’objectif de la recherche qui sera menée à l’ISIR est de s’appuyer sur la recherche de pointe sur le toucher social et la sonification des mouvements pour étudier empiriquement la conversion en sons des interactions sociales tactiles et des émotions correspondantes. En particulier, des études récentes menées à l’ISIR ont montré que les participants qui écoutent des sons enregistrés avec notre technique de sonification sont capables de catégoriser correctement les gestes tactiles (par exemple, caresser, tapoter) et que leurs évaluations de valence sont cohérentes avec les émotions sous-jacentes (par exemple, la colère, la joie, l’amour). De nombreuses questions scientifiques découlent de ces résultats, notamment les multiples dimensions du toucher social qui peuvent être sonifiées, les facteurs multisensoriels et contextuels qui augmentent la sensation d’être touché, les réponses perceptives et physiologiques des participants qui écoutent ces stimuli audio-tactiles. Toutes ces questions constitueront des avancées vers l’objectif de donner un accès à distance à des interactions sociales tactiles significatives.

Missions :

Le travail consistera à concevoir et à mener des expériences en laboratoire, à analyser les résultats et à contribuer à la rédaction des publications correspondantes.

Profil recherché :

Doctorat en sciences cognitives, en psychologie cognitive ou en sciences du comportement.

Compétences requises :

Une bonne connaissance et une bonne pratique des méthodes de psychologie expérimentale sont essentielles. Le candidat doit démontrer sa capacité à travailler au sein d’une équipe et de manière indépendante. Compte tenu de l’ampleur du projet, le candidat doit être en mesure d’assumer une responsabilité importante dans la réalisation de tous les aspects du projet de recherche, y compris la collecte de données, les statistiques, la programmation de base et la rédaction de publications.

Information générale :

– Date de début de contrat : 01/09/2024

– Durée du contrat : 2 ans

– Quotité de travail : 100%

– Expérience souhaitée : 1 à 10 ans

– Niveau d’études souhaité : Doctorat

– Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personnes à contacter :

– Malika Auvray ; auvray(at)isir.upmc.fr

– Envoyer votre candidature par mail, avec [nom de l’offre] en objet, un CV et une lettre de motivation + contact de 2 référents.

– Date limite de dépôt de la candidature : 15 mai 2024

Télécharger l’offre d’emploi

Post-doc : Développement d’un modèle numérique patient-spécifique pour la simulation chirurgicale de la valve mitrale

Contexte :

Le travail de post-doc s’inscrit dans le cadre d’un projet RHU-ICELAND qui regroupe plusieurs partenaires académiques, hospitaliers et un industriel. L’objectif du projet est de développer une nouvelle solution d’annuloplastie de la valve mitrale par voie transfémorale intégrant une échographie intra-cardiaque. Une telle solution peut être réalisée à cœur battant, sans circulation extracorporelle, fournissant ainsi, en première phase, une solution de réparation de la valve mitrale pour les patients considérés à haut risque qui ne sont pas éligibles à la chirurgie ouverte, et plus loin pour la plupart des patients nécessitant une réparation de la valve mitrale.

L’annuloplastie directe consiste à fixer un anneau ou une bande directement sur l’anneau mitral à l’aide d’ancres sous guidage direct échocardiographique et fluoroscopique. L’avantage de cette technique est qu’elle influence la forme de l’anneau mitral, reproduisant ainsi au plus près l’annuloplastie mitrale chirurgicale. Le projet porte sur deux phases essentielles : le développement d’un modèle numérique de l’anatomie et du système robotique permettant la dépose des agrafes sur la valve mitrale, et ensuite la conception et la validation du système robotique validé au préalable en numérique.

Objectifs techniques et scientifiques :

Le ou la post-doc recruté.e se penchera sur la modélisation numérique, dans un premier temps de la partie anatomique. L’objectif est de partir d’un modèle numérique open-source sur lequel il ou elle viendra rajouter des fonctionnalités pour s’approcher au mieux du modèle visé. Une fois le modèle anatomique est jugé satisfaisant, le ou la post-doc s’intéressera à la partie modèle numérique du robot endoscopique flexible (convoyeur) en partant d’un modèle numérique d’un robot existant développé pour la chirurgie obstétricienne. Le ou la post-doc aura le choix de mener les deux tâches en parallèle si c’est son souhait.

Validation expérimentale et gestion de projet :

Collaborer avec des équipes académiques et cliniques impliquées dans le projet pour participer à l’intégration de ses travaux dans le démonstrateur final. Le ou la post-doc bénéficiera d’un environnement de recherche stimulant et d’un accès à des données cliniques des partenaires cliniques et industriels du projet.

Profil recherché :

– Robotique, mécatronique, simulation et modélisation numérique,

– Compétences avancées en programmation (C++, Matlab, Python),

– Une maîtrise d’une librairie de simulation numérique de robots souples (e.g., SOFA) sera un plus,

– Enthousiasme pour la recherche interdisciplinaire et esprit de collaboration.

Structure d’accueil :

Le ou la candidat.e. recruté.e intégrera l’Institut des Systèmes Intelligents et de Robotique L’ISIR est sous la double tutelle de Sorbonne Université qui est une Université pluridisciplinaire d’envergure mondiale et du Centre National de la Recherche Scientifique (CNRS) qui est une institution de recherche parmi les plus importantes au monde. L’Institut national de la santé et de la recherche médicale (Inserm) est également tutelle de l’équipe AGATHE pour ses recherches médicales dans laquelle, le ou la post-doc recruté.e sera intégré.e.

L’ISIR organisé en plusieurs équipées pluridisciplinaires dont AGATHE. Parmi les activités de recherche abordées par les chercheuses et les chercheurs, la microrobotique, les drones, la robotique chirurgicale, les prothèses bioniques, les robots sociaux, et toutes sortes de systèmes intelligents et interactifs, physiques, virtuels ou de réalité mixte, l’intelligence artificielle, … Leurs applications adressent des enjeux sociétaux majeurs : santé, industrie du futur, transports, et service à la personne.

Information générale :

– Date de début de contrat : dès que possible

– Durée du contrat : 12 mois renouvelable pour 12 mois

– Quotité de travail : 100%

– Expérience souhaitée : Débutant à 4 ans

– Niveau d’études souhaité : Doctorat

– Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personnes à contacter :

Jérôme Szewczyk (PU-Sorbonne Université) et Brahim Tamadazte (DR-CNRS)

Envoyer, un seul fichier pdf, un CV, une lettre de motivation et les articles scientifiques que vous jugez utiles au dossier à sz(at)isir.upmc.fr et brahim.tamadazte(at)cnrs.fr

Télécharger la fiche de poste

Intitulé du poste : Post-doc « Haptique et interactions humain-machine multisensorielles »

Contexte :

Ce post-doc s’inscrit dans le cadre du projet ANR NeuroHCI. L’objectif global de NeuroHCI est d’améliorer la prise de décision humaine dans les mondes physique et numérique dans des contextes en interaction. Il existe différents scénarios dans lesquels un humain prend une décision avec un système interactif. La décision peut concerner un choix complexe du monde réel assisté par un ordinateur (par exemple, un traitement médical), le choix d’une méthode pour réaliser une tâche numérique (par exemple, retoucher une photo avec l’outil préféré), ou la manière dont nous décidons de la meilleure façon. pour effectuer une interaction haptique.

Missions :

L’approche scientifique envisagée reposera sur l’optimisation du retour haptique fourni à l’utilisateur en ce qui concerne la vision et l’audition en tirant parti de modèles informatiques d’intégration multisensorielle. Ainsi, les activités scientifiques du projet s’articuleront autour des questions suivantes:

– Comment s’assurer que les incohérences entre ce que l’utilisateur voit et ce qu’il ressent ne brisent pas l’illusion et comment atténuer leurs effets sur l’expérience utilisateur ?

– Comment les incohérences visuo-haptiques influencent les stratégies des utilisateurs (par exemple, avec quels objets ils décideront d’interagir) et la prise de décision de haut niveau

Profil recherché :

Le candidat idéal doit être titulaire d’un doctorat et d’une solide expérience en interaction homme-machine et/ou en sciences cognitives.

Compétences requises :

– Expérience en haptique désirée ;

– Solides compétences en Python, Matlab ou équivalent ;

– Bonne connaissance de la conception expérimentale, de la psychophysique et des statistiques ;

– Excellent dossier de publication ;

– Volonté de travailler dans une équipe multidisciplinaire ;

– Bonnes compétences en communication;

Information générale :

– Date de début de contrat : au plus tard le 01/06/2024
– Durée du contrat : 24 mois
– Quotité de travail : 100%
– Expérience souhaitée : Débutant à 4 ans
– Niveau d’études souhaité : Doctorat
– Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personne à contacter : 

– David Gueorguiev ; david.gueorguiev(at)sorbonne-universite.fr

– Envoyer votre candidature par mail, avec [nom de l’offre] en objet, un CV et une lettre de motivation.

Télécharger l’offre d’emploi

Post-doc : « Apprentissage en robotique, avec application à la saisie d’objets »

Contexte :

Dans le cadre du projet FET Proactive DREAM (http://dream.isir.upmc.fr/), une approche de la robotique adaptative basée sur l’apprentissage ouvert a été définie. L’objectif principal est de permettre à un robot d’apprendre sans nécessiter une préparation minutieuse par un expert. Cette approche soulève de nombreux défis, notamment l’apprentissage avec des récompenses rares, l’apprentissage de représentations (pour les états et les actions), l’apprentissage et l’exploitation de modèles, le transfert d’apprentissage, le méta apprentissage et la généralisation. Ces sujets sont considérés en simulation, mais aussi sur des plateformes robotiques réelles, notamment dans le contexte de la saisie d’objets.

Missions :

Ce poste vise à contribuer à ces sujets dans le cadre de plusieurs projets européens, en particulier SoftManBot, Corsmal, INDEX et Learn2Grasp. S’appuyant sur les travaux antérieurs de l’équipe de recherche, les approches proposées devront être facilement adaptables à différentes plateformes robotiques et seront donc appliquées à différents robots (bras Panda de Franka-Emika, Baxter, PR2 ou TIAGO, par exemple).

Profil recherché :

Les candidats à ce poste doivent être titulaires d’un doctorat en apprentissage machine ou dans un domaine connexe dans lequel des applications robotiques (simulées ou réelles) ont été considérées.

Compétences requises :

Une excellente formation est attendue en apprentissage machine ainsi qu’une expérience en robotique. D’excellentes compétences en programmation en Python sont attendues.

Plus d’informations : 

  • Type de poste : Chercheuse / Chercheur post-doctoral
  • Durée du contrat : 24 mois
  • Niveau d’études souhaité : Doctorat
  • Montant rémunération : Rémunération en fonction de l’expérience
  • Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personne à contacter : 

  • Stéphane Doncieux
  • stephane.doncieux(at)sorbonne-universite.fr
  • Envoyer votre candidature par mail, avec [nom de l’offre] en objet, un CV et une lettre de motivation.

Télécharger l’offre d’emploi

Offres de doctorat, postdoctorat ou d’ingénieur·e de recherche pour le groupe HCI Sorbonne (Human Computer Interaction)

Contexte :

Nous avons plusieurs postes pour un postdoctorat ou en tant qu’ingénieur·e de recherche dans le groupe HCI Sorbonne (https://hci.isir.upmc.fr) à Sorbonne Université, Paris, France.

Missions :

Nous cherchons des personnes curieuses qui souhaitent réaliser des projets de recherche à l’intersection de l’IHM et neuroscience avec (au choix) la RV, l’haptique, la robotique ou l’IA. Des sujets possibles sont :

  • Nouvelles techniques d’interaction en RV,
  • RV et Haptique pour le jeux et/ou l’apprentissage,
  • Modèles computationnels pour l’apprentissage, la prise de décision et la performance humaine,
  • Systèmes de recommandation s’appuyant sur l’IA.

Exemples de travaux récents dans ces domaines :

Profil recherché : 

Pour un post-doctorat, un doctorat en IHM ou un domaine en lien avec l’IHM est nécessaire.

Compétences requises :

  • Compétences solides en programmation et analyse strong programming and analytical skills,
  • Solide expérience dans au moins un de ces domaines : IHM, RV, Haptique, Robotique, IA.

Plus d’informations : 

  • Type de poste : Postdoctorat ou Ingénieure de Recherche
  • Date de début de contrat : dès que possible
  • Durée du contrat : 1 à 2ans
  • Niveau d’études souhaité : Master 2 (pour ingénieur), doctorat (pour post-doc)
  • Laboratoire d’accueil : ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Personnes à contacter : 

  • Gilles Bailly et Sinan Haliyo
  • Email : gilles.bailly(at)sorbonne-universite.fr ; sinan.haliyo(at)sorbonne-universite.fr
  • Candidature : Envoyer votre candidature par mail, avec un CV et une lettre de motivation.
  • Date limite de dépôt de la candidature : Aucune

Offres de thèse

Sujet de thèse : Segmentation et recalage de nuages de points 3D pour la chirurgie orthopédique 

Contexte :

Cette proposition de thèse s’inscrit dans l’un des axes de recherche de l’équipe RPI-Bio de l’ISIR qui a pour objectif de répondre à l’impératif du geste extrême et maîtrisé sur le vivant (caractérisation, diagnostic, chirurgie, etc.). L’équipe tire parti d’un rapprochement fondamental entre robotique médicale, microrobotique, perception et IA pour développer des approches globales et multidisciplinaires. Parmi les travaux menés dans l’équipe, une plateforme de réalité augmentée pour la chirurgie du genou (projet ANR MARSurg) est en cours de réalisation. Elle s’appuie sur les apports de la vision par ordinateur et de l’apprentissage machine pour s’affranchir des limites des procédures chirurgicales actuelles. En orthopédie, le positionnement 3D de la prothèse du genou, des structures anatomiques, des outils… doit être estimé avec la plus grande précision pour garantir une valeur ajoutée clinique à cette nouvelle plateforme. La pratique actuelle est dominée par l’utilisation d’instruments métalliques, dits ancillaires, spécifiques à l’implant. Elle est donc invasive et sa précision peut être améliorée.

De plus en plus souvent, la procédure chirurgicale est planifiée dans les détails en amont, grâce à l’utilisation d’imagerie préopératoire, puis transposée durant l’intervention sur le patient, ce qui demande un recalage précis entre la modélisation préopératoire et le genou du patient. Ces approches ont permis d’améliorer la procédure du placement des prothèses en orthopédie, mais présentent encore plusieurs problèmes, notamment celui de la précision du recalage, du temps de préparation préopératoire et de réalisation per-opératoire.

Objectifs scientifiques de la thèse :

Dans le cas de la localisation précise du genou, l’objectif est d’identifier les pixels de chaque partie du genou afin de venir recaler un modèle 3D de celui-ci. Pour cette chirurgie orthopédique, la ou le doctorant recruté aura pour mission scientifique de développer des méthodes reposant sur l’’apprentissage profond pour localiser et estimer la pose des structures anatomiques et des instruments de chirurgie. Dans un premier temps, une segmentation sémantique permettra de localiser les objets d’intérêt dans l’image. L’utilisation conjointe d’informations de texture (RGB) et de profondeur, via l’emploi de caméras RGB-D, devra permettre d’améliorer la précision et la robustesse de la segmentation. Les algorithmes développés devront répondre à deux défis majeurs : d’une part, l’utilisation conjointe d’informations spatiales haute résolution et contextuelles pour obtenir des solutions sémantiquement cohérentes, et d’autre part, la fusion des images RGB et de profondeur, qui ont des contenus très différents. Les nuages de points associés aux différentes régions issues de la segmentation seront recalés avec ceux d’un modèle 3D préopératoire (e.g., CT scan ou IRM), voire d’un modèle générique (e.g., CAO) grâce à un vecteur de caractéristiques associé à chaque point et appris pour répondre au mieux à l’estimation de la transformation rigide entre les deux nuages. Ainsi, si la segmentation et le recalage précis d’images RGB-D sont des défis à part entière, un troisième défi réside dans la fusion de ces deux tâches : dans quelle mesure le modèle 3D et son recalage ne pourrait pas aider la segmentation et vice versa ? Une solution globale, fusionnant ces aspects dans un seul apprentissage pourrait alors être envisagée.

Profil et compétences :

Diplôme de Master en informatique ou en mathématiques appliquées, diplôme d’ingénieurs. Compétences et expérience en machine learning. Bonnes compétences techniques en programmation et familier des bibliothèques d’apprentissage machine.

Modalités de candidature et date limite :

Envoyer votre dossier de candidature (CV, lettre de motivation, relevés de notes de M1 et M2 ou équivalent), en un seul fichier PDF, aux adresses mails susmentionnées avant le 25 septembre 2024.

Supervision : Catherine ACHARD, Professeure Sorbonne Université, catherine.achard@sorbonne-université.fr et Brahim TAMADAZTE, Directeur de Recherche du CNRS, brahim.tamadazte@cnrs.fr

Financement : Allocation de Recherche de l’école doctorale SMAER de Sorbonne Université. Le financement est attribué en fonction du profil et du parcours du candidat qui sera amené à présenter son dossier de candidature devant un jury de sélection.

Structure d’accueil : L’Institut des Systèmes Intelligents et de Robotique (ISIR).

Télécharger l’offre de thèse

Thesis title: “Foundation Models for Physics-Aware Deep Learning”

Context:

Physics-aware deep learning is an emerging research field aiming at investigating the potential of AI methods to advance scientific research for the modeling of complex natural phenomena. This is a fast-growing research topic with the potential to boost scientific progress and to change the way we develop research in a whole range of scientific domains. An area where this idea raises high hopes is the modeling of complex dynamics characterizing natural phenomena occurring in domains as diverse as climate science, earth science, biology, fluid dynamics. A diversity of approaches is being developed including data-driven techniques, methods that leverage first principles (physics) prior knowledge coupled with machine learning, neural solvers that directly solve differential equations. Despite significant advances, this remains an emerging topic that raises several open problems in machine learning and application domains. Among all the exploratory research directions, the idea of developing foundation models for learning from multiple physics is emerging as one of the fundamental challenges in this field. This PhD proposal is aimed at exploring different aspects of this new challenging topic.

Research Directions:

Foundation models have become prominent in domains like natural language processing (GPT, Llama, Mistral, etc) or vision (CLIP, DALL-E, Flamingo, etc). Trained with large quantities of data using self-supervision, they may be used or adapted for downstream tasks through pre-training from large amounts of training data. Initial attempts at replicating this framework in scientific domains is currently being investigated in fields as diverse as protein (Jumper et al. 2021), molecule (Zhou 2023), weather forecasting (Pathak 2022, Nguyen 2023, Kochkov 2024). Is the paradigm of foundation models adaptable to more general physics modeling such as the complex behavior of dynamical systems? Large initiatives are emerging on this fundamental topic (https://iaifi.org/generative-ai-workshop). Some preliminary attempts are currently being developed (McCabe 2023, Subramanian 2023, Hao 2024). They suggest that learning from multiple steady-state or time dependent partial differential equations (PDEs) could enhance the prediction performance on individual equations. This high stake, high gain setting might be the next big move in the domain of data-driven PDE modeling. The objective of the PhD is to explore different directions pertaining to the topic of foundation models for physics, focused on the modeling of dynamical systems.

– Solving parametric PDEs:

A first step is to consider solving parametric partial differential equations (PDEs), i.e. PDEs from one family with varying parameters including initial and boundary conditions, forcing functions, or coefficients. It is possible that different parameters values, give rise to very different dynamics. Current neural solvers operate either on fixed conditions or on a small range of parameters with training performed on a sample of the parameters. A first direction will be to analyze the potential of representative NN solvers to interpolate and extrapolate out of distribution to a large range of conditions when learning parametric solutions. A key issue is then the development of training techniques allowing for fast adaptation on new dynamics. We will investigate methods inspired from meta-learning for adaptive strategies (Yin 2021, Kirchmeyer 2022).

– Tackling multiple physics:

The foundation approach is particularly interesting in the case of scarce data, provided physics primitive could be learned from related but different PDE dynamics that are available in large quantities and then transferred to the case of interest. Learning from multiple PDEs raises algorithmic challenges since they operate on domains with different space and time resolutions, shapes and number of channels. We will consider an Encode-Process-Decode framework so that the commonalities between the dynamics are encoded and modeled in a shared latent space and the encoding-decoding process allows to project from and to the observation space for each PDE. As for the temporal variability of the observations, one will consider models that can operate on irregular series in the spirit of (Yin2023). This framework will be evaluated with selected backbones.

– Generalization and few shot capabilities:

Generalization to new dynamics is the core problem motivating the development of foundation models in science. This is a key issue for the adoption of data-driven methods in physics and more generally in any context were the data is scarce. We will consider the general framework of few shot learning aiming at fine tuning pre-trained models for downstream tasks. In this context the objective will be to develop frameworks for the fast adaptation of foundation models to target tasks. Different strategies will be analyzed and developed including parameters sampling, meta-learning for adaptation (Yin 2023) and strategies inspired from the developments in semantics and language applications like in-context learning (Chen 2024).

Position and Working Environment:

The PhD studentship is a three years position starting in October/November 2024. It does not include teaching obligation, but it is possible to engage if desired. The PhD candidate will work at Sorbonne Université (S.U.), Pierre et Marie Campus in the center of Paris. He/She will integrate while benefiting the MLIA team (Machine Learning and Deep Learning for Information Access) at ISIR (Institut des Systèmes Intelligents et de Robotique). MLIA is collaborating with fellow scientists from other disciplines such as climate or fluid mechanics. The PhD candidate will be encouraged to get involved in such collaborations.

Required Profile:

Master degree in computer science or applied mathematics, Engineering school. Background and experience in machine learning. Good technical skills in programming.

General information:

– Supervisor: Patrick Gallinari, patrick.gallinari@sorbonne-universite.fr

– Collaboration for the thesis: Cerfacs Toulouse, Institut d’Alembert, Sorbonne Université, CNAM Paris

– Host laboratory: ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

– Start date: October/November 2024

– Note: The research topic is open and depending on the candidate profile could be oriented more on the theory or on the application side

– Keywords: deep learning, physics-aware deep learning, fluid dynamics, AI4Science

Contact person:

– Patrick Gallinari

– Email: patrick.gallinari@sorbonne-universite.fr

– Please send a cv, motivation letter, grades obtained in master, recommendation letters when possible to patrick.gallinari@sorbonne-universite.fr

– Application deadline: 15/12/2024

Donwload this offer

Offres de stage

Internship subject: Modeling the contribution of thalamo-cortical circuits to individual differences in behavioral flexibility

The ability to generate flexible behavioural responses is crucial for survival in complex and dynamic environments. Within a population, behavioural output is typically quite variable, leading to individual choices with differential adaptive values. Understanding the neural bases of these specific behavioural traits is currently a growing issue as it may be a key element to better understand the trajectories that may lead to pathological states.

While past research has largely considered the role of highly evolved brain regions such as the prefrontal cortex, the importance of subcortical regions has been increasingly recognized over the past few years. This is especially true for the mediodorsal thalamus (MD) which has extensive and multiple reciprocal connections with prefrontal areas and especially the orbitofrontal cortex (OFC), a well-known key hub for flexible behaviours, making it an important hub for executive functions. Functional dysconnectivity within thalamocortical circuits is associated with many conditions and neuropsychiatric disorders such as Schizophrenia, obsessive-compulsive disorder, ADHD or addiction. But the mechanisms by which these circuits may contribute to behavioral flexibility are still largely unknown.

In this project, we hypothesize that MD-OFC circuits may constitute a key element for understanding the neural underpinnings of variable behavioral output ranging from adaptive to maladaptive decision-making. Our preliminary dataset and model suggest that the MD->OFC functional connection is critical to support efficient flexible behaviour. We thus hypothesize that inter-individual variability in the learning strategy employed depends on the  individual functional endophenotype of this pathway.

In this work, we will first model experimental data collected by our collaborators at the CNRS INCIA in Bordeaux where rats learn to choose between different levers that have different reward probabilities, different uncertainty levels, and subject to abrupt task changes. At a second stage, we will derive theoretical predictions from this modeling work in order to prepare for the new experiments that our collaborators will perform during a new ANR-funded project starting in October 2024. This ANR project also includes PhD funding at ISIR which could start in October 2025 in extension of the present internship.

The current task includes unsignalled abrupt changes to which the animal has to adapt, requiring a constant exploration-exploitation trade-off. The present version of the task is an extension of a task where we have previously shown that dopamine blockade impairs the exploration-exploitation trade-off in rats. Here we will compare an OFC-lesioned group and an MD-lesioned group with a control group, all alternatively facing difficult versus easy task conditions, where the contrast between levers’ reward probability is manipulated to make the best option more or less easy to find.

We predict that OFC lesions will impair rat performance only in the difficult condition, where subcortical structures involved in reward-based learning may be insufficient to learn the task. We will develop alternative computational models which may explain these behavior impairments through the manipulation of different model parameters. We will then simulate these models to verify that they can reproduce rat behavior, and fit them to the experimental data to find the best model. We will then evaluate whether significant model parameters change explain the data. We will finally perform model simulations in novel extensions of the task in order to derive theoretical predictions which could drive future experiments.

Job description:

– Supervisor: Mehdi Khamassi

– Starting date: 01/10/2024

– Duration: 1d/week during S1, full-time during S2 until 30/06/2025

– Level of studies required: M1/engineering

– Host laboratory: ISIR (Institut des Systèmes Intelligents et de Robotique), Campus Pierre et Marie Curie, 4 place Jussieu, 75005 Paris.

Contact person:

– Mehdi Khamassi

– Email : mehdi.khamassi@sorbonne-universite.fr

– Send your application by email, with [internship subject] in the subject line, a CV and a covering letter.

– Application deadline: 30/09/2024

Download this internship offer