Home » Project » Active catheterism for neuroradiology

Active catheterism for neuroradiology

Catheters for INR operated by Shape Memory Alloys

To meet the need for controllability in interventional neuroradiology devices, we have developed a patented method for manufacturing active catheters incorporating Shape Memory Alloy (NiTi) wires. An advanced modeling step allowed us to optimize the dimensions of these active catheters which were then tested and validated on silicone and animal models. The smallest prototypes produced have diameters of the order of one millimeter and angles of curvature greater than 90°. Today, this technology has been transferred via the start-up Basecamp Vascular, which is industrializing the developed process.

Catheters for INR operated by Shape Memory Alloys

Context

Active catheterization as a solution to the difficulties of endovascular navigation

Currently, the catheters used in cardiology or interventional radiology (for example for the embolization of cerebral aneurysms) are completely passive tools and are manually introduced. In addition, the visual feedback offered to radiologists during the intervention is reduced to low-resolution radio images, most often in 2D. In this context, catheters are difficult to control and their progression is slow or even impossible until the anatomical target. In neuroradiology, for example (navigation into the brain), it is estimated that the navigation failure rate is 20% due to an anatomy that is too tortuous at the level of the supra-aortic trunks (carotid).

ISIR has been collaborating with the interventional neuroradiology department of the Rothschild Ophthalmological Foundation (FOR) for many years on the theme of active catheterization for INR. The aim of the CATANE project is to develop and validate motorized catheters, controllable in their distal part to improve the conditions of arterial navigation: negotiation of the branches, pointing of the target. The chosen approach is that of miniature actuators based on Shape Memory Alloys (SMA) directly integrated at the tip of the catheters.

Objectives

Results

Partnerships and collaborations

Basecamp Vascular industrializes the ISIR active catheters.

The CATANE project was first supported by the CAMI labex (Computer Assisted Medical Interventions) which financed the recruitment of an engineer in 2013 and then by the SATT Lutech in the form of a maturation grant between 2014 and 2015. Today, the technologies developed and in particular the one described in patent WO2011116961A1, have been transferred to the start-up Basecamp Vascular created in 2016. Its president is Dr. Raphaël Blanc, interventional neuroradiologist at the Rothshild Ophthalmological Foundation in Paris. Dr. Blanc has been associated with the CATANE project since its inception.

Project members

Jérôme Szewczyk
Professeur des Universités