Home » Projet » DÉVELOPPER DES MODÈLES IHM DU COMPORTEMENT UTILISATEUR-UTILISATRICE

DÉVELOPPER DES MODÈLES IHM DU COMPORTEMENT UTILISATEUR-UTILISATRICE

Projet NeuroHCI – Prise de décisions multi-échelle avec les systèmes interactifs 

Ce projet pluridisciplinaire s’appuie sur les Neurosciences Computationnelles pour développer des modèles IHM du comportement utilisateur-utilisatrice. Il s’agit d’étudier dans quelle mesure on peut transposer les théories, modèles et méthodes des Neurosciences Computationnelles à l’IHM.

Le projet NeuroHCI vise à améliorer la prise de décision humaine dans les mondes physique et numérique dans des contextes interactifs. Les situations dans lesquelles un humain prend une décision avec un système interactif sont variées : 

Est-ce que j’utilise mon expérience ou Google Maps pour choisir mon itinéraire ? Est-ce que je réponds à cet e-mail sur mon smartphone ou sur mon PC ? Est-ce que j’utilise des menus ou des raccourcis pour sélectionner cette commande fréquente ? Est-ce que j’utilise le robot chirurgical Da Vinci pour opérer mon patient ou les instruments laparoscopiques traditionnels ? Comment puis-je atteindre cet objet avec ma prothèse robotique ?

La décision peut porter sur un choix complexe dans le monde réel assisté par un ordinateur (par exemple, un traitement médical) ou sur le choix d’une méthode pour réaliser une tâche numérique (par exemple, modifier une photo avec l’outil préféré).

Le contexte

Les neurosciences étudient les phénomènes impliquant à la fois la prise de décision et l’apprentissage chez les humains, mais ont reçu peu d’attention en IHM. 

Le projet NeuroHCI est un projet en interaction humain-machine (IHM) qui vise à concevoir des systèmes interactifs développant l’expertise de l’utilisateur-utilisatrice en établissant un partenariat humain-machine. L’interaction avec ces systèmes peut être vue comme un problème de prise de décision à plusieurs échelles :

Les objectifs

L’objectif scientifique est de comprendre comment les utilisateurs-utilisatrices prennent des décisions avec des systèmes interactifs et comment ces décisions évoluent dans le temps. En effet, les utilisateurs-utilisatrices développent progressivement une expertise au cours de l’utilisation répétée des systèmes interactifs. Cette expertise influence la façon dont ils/elles prennent leurs décisions. Cela nécessite l’étude simultanée des phénomènes d’apprentissage et de prise de décision qui sous-tendent l’utilisation des systèmes interactifs.

L’objectif applicatif est de concevoir et de mettre en œuvre de meilleurs systèmes interactifs et adaptatifs. L’être humain s’adapte et développe son expertise en utilisant un système interactif. L’objectif ici est que le système, de son côté, évolue également pour s’adapter à ses utilisateurs-utilisatrices, c’est-à-dire qu’il s’habitue à leur comportement et en particulier à leur expertise. Il s’agit donc d’établir un partenariat humain-machine dans lequel les deux acteurs (humain et machine) s’adaptent l’un à l’autre.

Les résultats

Pour atteindre ces objectifs, nous démontrons les avantages de notre approche à travers 3 applications, pour lesquelles des plateformes existent déjà et sont maintenues par les partenaires, mais où des défis scientifiques demeurent pour leur adoption dans le monde réel. Ces trois applications sont :

Notre hypothèse de recherche est qu’il est nécessaire de développer des modèles computationnels robustes d’apprentissage et de prise de décision en IHM. Les modèles computationnels permettent d’expliquer et de prédire le comportement humain en synthétisant des phénomènes complexes de manière testable et réfutable. En IHM, ils servent à évaluer la qualité d’une interface sans avoir à mener des études d’utilisateurs-utilisatrices longues et coûteuses. Lorsque ces modèles sont robustes, ils peuvent être intégrés dans des systèmes interactifs pour optimiser l’interaction et adapter l’interface en fonction de l’expertise et/ou des actions des utilisateurs-utilisatrices.

Partenariats et collaborations

Porté par Gilles Bailly, directeur de recherche CNRS à l’ISIR, le projet ANR NeuroHCI est un projet inter-équipes interne à l’ISIR, qui implique plusieurs membres du laboratoire. 

Membres du projet

Gilles Bailly
Directeur de recherche CNRS
Baptiste Caramiaux
Chargé de recherche CNRS
Benoît Girard
Directeur de Recherche
logo ISIR
Julien Gori
Chargé de recherche
logo ISIR
Emmanuel Guigon
Chargé de Recherche
Sinan Haliyo
Maître de Conférences, HDR
Nathanael Jarrasse
Chargé de Recherche CNRS
Mehdi Khamassi
Directeur de recherche
Malika Auvray
Directrice de recherche CNRS